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ABSTRACT
Collaboration analytics has the potential to empower teachers and
students with valuable insights to facilitate more meaningful and
engaging collaborative learning experiences. Towards this end, we
developed computational models of student speech during small
group work, identifying instances of uplifting behavior related to
three Community Agreements: community building, moving think-
ing forward, and being respectful. Pre-trained RoBERTa language
models were fine-tuned and evaluated on human annotated data
(N = 9,607 student utterances from 100 unique 5-minute classroom
recordings). The models achieved moderate accuracies (AUROCs
between 0.67-0.84) and were robust to speech recognition errors.
Preliminary generalizability studies indicated that themodels gener-
alized well to two other domains (transfer ratios between 0.46-0.85;
with 1.0 indicating perfect transfer). We also developed four ap-
proaches to provide qualitative feedback in the form of noticings
(i.e., specific exemplars) of positive instances of the Community
Agreements, finding moderate alignment with human ratings. This
research contributes to the computational modeling of the rela-
tionship dimension of collaboration from noisy classroom data,
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selection of positive examples for qualitative feedback, and towards
the empowerment of teachers to support diverse learners during
collaborative learning.

CCS CONCEPTS
• Applied computing → Collaborative learning; • Human-
centered computing → Collaborative and social computing.
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1 INTRODUCTION
Small group collaborative learning is becoming a hallmark of 21st
century K-12 pedagogy, owing to its effectiveness in nurturing skills
such as critical thinking, problem-solving, and social interaction in
addition to domain knowledge and disciplinary practices [16, 24, 35].
However, managing effective collaborative learning experiences can
be challenging for teachers as they also need to monitor progress,
provide guidance on learning activities, and support groups in pro-
ductive, knowledge-building conversations [38, 50]. Past research
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has highlighted a persistent deficit in students’ collaboration skills
[14, 16, 18, 51] and students often report demotivation and frus-
tration with collaborative learning activities when they feel their
peers’ social conduct during activities is disruptive [5]. These issues
have been exacerbated by the long period of remote learning in the
wake of the COVID-19 pandemic, where students were required
to engage in independent study, leading to challenges related to
self-regulation, including low motivation and ineffective commu-
nication with peers, ultimately leaving students less prepared for
collaborative learning [13, 36].

The fields of Computer-Supported Collaborative Learning and
Collaborative Learning Analytics have proposed several techno-
logical solutions to serve as resources for teachers and learners to
address some of these issues through capturing, analyzing, and vi-
sualizing insights from group interactions [24, 29, 40]. Yet, a recent
review has highlighted several issues with existing approaches to
collaborative analytics relating to features, scope, and presentation
[26]. “Collaborative learning dashboards,” they posit, “should be
designed not to simply show a group’s interactive behavior, but
rather to inform and motivate future decisions” (p. 177).

Taking a step in this direction, the present paper focuses on
the development of computational models of student discourse to
enable collaborative analytics technologies for teachers, students,
and researchers. Our focus on discourse was motivated by the fact
that sharing ideas and building off of others’ is the hallmark of
collaboration [37, 53]. Accordingly, language emerges as a signif-
icant indicator of many aspects of collaborative learning [2, 16].
Prior research has leveraged natural language processing (NLP)
techniques to assess group communication to identify indicators
of Collaborative Problem Solving (CPS) proficiency, showcasing
their ability to accurately detect such skills [20, 32, 33, 39, 44, 46].
NLP models can then be used to provide feedback, scaffolding skill
development during collaboration [9].

Whereas prior work has largely focused on the task dimension
of collaboration, emphasizing behaviors that promote success on
the task at hand, we were interested in measuring and supporting
the relationship dimension of collaboration as a valued measure in
its own right [14, 16, 22]. Accordingly, a goal of our work was to
support students in developing skills to have more accountable and
uplifting interactions with one other. Based on extensive co-design
with youth [7], we are developing technology that automatically
identifies and visualizes expressions of socially uplifting discourse
in student group speech across three dimensions, which we call
Community Agreements (CAs): community building, moving think-
ing forward, and being respectful. A major component was the ana-
lytics needed tomodel CAs from real-world classroom speech as our
system is intended for use in situations where multiple groups are
simultaneously interacting. Another important aspect was model
generalization, which poses a substantial challenge in the deploy-
ment of models within educational environments. Collaboration
inherently spans many contexts, and the availability of pre-existing
data in new contexts is uncertain. Finally, integral to the system
was the extraction of noticings (i.e., exemplars) of CAs from stu-
dent speech. We envisioned noticings to be presented as feedback
to teachers and students, providing non-evaluative, qualitative in-
stances of affirmative discourse to inspire discussion and bolster
transparency of the underlying analytics. By exploring this novel

type of feedback, we sought to help students understand how their
own community-building talk manifests in collaborative learning
settings.

1.1 Related Work
Collaboration entails telling and doing, implicating verbal, paraver-
bal, and nonverbal modalities [30, 44]. While others have have
investigated the use of nonverbal signals like eye gaze, facial ex-
pression, body movement, and acoustic-prosodic features of speech
to model aspects of collaboration [45, 52], we focus on linguistic
approaches. Considerable research has analyzed collaborative dis-
course via the application of advanced NLP techniques. This has
been operationalized by obtaining language data (e.g., from text
chats or transcribed spoken interactions) to model CPS skills such
as negotiation, information sharing, regulation, and argumentation
[12, 20, 39, 44, 46]. Insights have been used to understand emerg-
ing social networks and collaborative patterns [31] and to predict
outcomes like learning improvement [41] and task performance
[15]. Prevalent NLP methodologies have involved using words,
phrases, or part-of-speech tags as features in classification, how-
ever recently there has been a growing trend in utilizing pre-trained
neural networks, with several studies showing their effectiveness
with collaborative discourse [25, 33].

We focus on two key computational issues: model generalization
and speech recognition in real-world settings. While generalization,
or the ability of models to transfer knowledge from domains in
which they were trained to new ones, is one of the primary desider-
ata of NLP, few collaboration analytics studies have addressed this
[8, 32]. Many focus on a single domain or classroom curriculum,
leading to models with highly specific knowledge, often lacking
the high-level representations needed for broader learning and ap-
plications. Extending the scope of collaborative analytics research
to encompass diverse contexts and real-world educational settings
would enhance their relevance. However, analyzing student speech
engenders significant computational challenges. Automated Speech
Recognition (ASR) accuracy is substantially lower for children’s
speech than adults’ [42], and typical signal-to-noise ratios in the
classroom can range from −7 dB to +5 dB [23], further impeding
data quality. Thus, pertinent questions are the extent to which
ASR errors cascade to affect downstream classification and how to
increase robustness to noisy speech [4].

Beyond computational modeling, studies have investigated tools
for providing feedback for classroom collaboration skills. One ex-
ample, CPSCoach, employed ASR and NLP to offer college students
personalized feedback on their CPS skills during video conferencing
sessions, supplemented by learning materials for skill enhancement
[47]. A similar system, IneqDetect, visualizes individual speaking
time to help students reflect on team communication [27]. Feedback
solely rooted in speaking time may overlook contributions that ad-
vance the team’s goals in different ways. In a study conducted to
evaluate the impact of feedback on students’ collaboration skills,
findings indicated that although there was no significant improve-
ment in collaboration skills, it was recommended that feedback be
prompt, include important metrics, and offer explanations, along
with personalized guidance on enhancing collaboration [10]. We
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found feedback in the form of model noticings to be an underrep-
resented approach. AI explainability techniques such as saliency
maps, attention mechanisms, and tools like LIME or SHAP [28]
are often employed to visualize and explain the model’s decision-
making process to end users, however in the context of a classroom,
providing concrete examples may allow students to better grasp
and trust the model’s behavior.

1.2 Current Study
We focused on the development of CA coding schemes, training and
evaluation of NLP models, and selection of noticings for feedback.
Specifically, we sought to answer the following research questions:

(1) What are effective indicators of Community Agreements in
small group collaborative learning discourse?

(2) How can ASR challenges in noisy classroom environments
be addressed for classifying Community Agreements?

(3) To what extent do the models generalize to new curricula
without incorporating data from the target contexts?

(4) What are the most effective ways to identify noticings of
student discourse for qualitative feedback?

To address (1), we employed a multi-faceted approach to develop-
ing a robust CA coding scheme, aligning indicators from a validated
CPS framework to CAs, applying this mapping to classroom dis-
course. For (2), we fine-tuned RoBERTa language models on noisy
classroom data, involving both ASR and human transcripts. For (3),
we evaluated our models on labeled data from small group work
from an educational physics game and a block programming game.
Finally, for (4), we implemented four computational strategies for
identifying and ranking examples of positive instances of CAs in
student speech. We collected human ratings on the usefulness and
validity of a subset of these noticings. Together, we make progress in
advancing collaborative discourse analytics to facilitate formative
feedback in real-world classrooms.

Key novel aspects of our work in light of prior research in-
cludes fully-automated modeling of Community Agreements in
child speech from noisy classroom environments, and the develop-
ment of methods for selecting noticings to promote reflection and
transparency.

2 DATA
Approval for all procedures was obtained from the designated In-
stitutional Research Boards, and analyzed data involved students
who provided their assent and whose parents or legal guardians
provided consent.

2.1 Data Collection
Data was collected from urban, rural, and suburban public middle
school classrooms in Colorado, USA during the preceding two years.
Students participated in small group work during a curriculum
unit called “Sensor Immersion”, where they programmed and wired
environmental sensors to collect data about their surroundings. The
curriculum revolved around an interactive display called the Data
Sensor Hub (DaSH), which was a central point of exploration for the
students [6]. Students explored the system, constructed scientific
models, and acquired the skills to replicate its functionality in the
scope of their own investigations, involving authentic debugging

and engineering practices as they relate to sensor technology and
pair programming within group settings [11].

A tabletop omnidirectional microphone (Yeti Blue) was placed at
each group table during recorded Sensor Immersion sessions. This
microphone was selected after considering audio quality, affordabil-
ity, power source, form factor, and ease of use. Due to the reliance
on a single omnidirectional microphone to capture the conversa-
tions of multiple students, the collected data was inherently noisy
[4, 42]. Video data was also collected with an iPAD camera.

Within each recording, we identified five 5-minute segments
from the group work portion of the lesson, typically confined to
the middle of the recording, as the initial and final portions tended
to have less relevant discussion. We systematically listened to each
segment. If it met a 20-word threshold, it was included as a sample,
otherwise the next segment was evaluated, and so on. If none of
the segments met the criteria, the recording was excluded from
analyses.

The dataset consisted of 100 5-minute excerpts of small group
work collected from 164 unique students (73 dyads, 7 triads, and
6 tetrads) under the guidance of 14 teachers. Demographic infor-
mation from individual students was not collected, however the
demographic composition of the school districts indicated that the
sample was diverse.

2.2 Human and Automated Speech Recognition
Transcription

Recordings were transcribed manually by three humans resulting
in a total of 16,515 transcribed utterances. In cases where speech
was too noisy, transcribers denoted some or all of the utterance as
"[inaudible]". Human transcriptions included notes such as laughter,
singing, or crosstalk (e.g., “[laughter]”, “[singing]”, “[crosstalk]”), as
well as who the student was addressing (e.g., “[addressing group]”,
“[addressing other]”). Individual utterances were automatically ex-
tracted from recordings using the human annotated timestamps
and transcribed with Whisper, a state-of-the-art open-access ASR
model trained on a substantial dataset of 680,000 hours of speech
[34].

We computed the word error rate (WER) of each utterance, de-
fined as 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠+𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠+𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑑𝑠
. The mean student WER

was 68.9%, highlighting challenges of working with real classroom
speech. There was high variability in WERs, however, analyses
suggested that this can be improved by filtering on ASR confidence
value. For example, focusing only on utterances with confidence
values greater than the 40th percentile reduced the student WER
to 32.6%.

2.3 Human Coding of CA Labels
Utterance-level CA Annotations. To assess CAs within student

group conversations, we devised a novel mapping from CPS indica-
tors (derived by [48, 49]). This generalizable CPS coding framework
consists of three facets of CPS established by literature (construct-
ing shared knowledge, negotiation/coordination, and maintaining
team functions) and 18 indicators observable in group conversa-
tions. The scheme was validated through empirical studies of triads
across contexts including differences in participant age, co-locality
and virtuality, and task type [48], and was further validated as a
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Table 1: Collaborative Problem Solving (CPS) indicator mappings to Community Agreements and their mean frequency in the
final filtered dataset. Corresponding examples from the Sensor Immersion dataset are given.

Community Agreement (Mean Freq.) Corresponding Examples from Sensor Immersion Data
CPS Indicators

Being Respectful (9%)
Responds to others’ questions or ideas “Yeah, you spelt it right.”
Asks others for suggestions “Okay, what should we do now?”
Compliments or encourages others “Oh that’s just dope. I love that color.”
Apologizes for one’s mistakes “[...] Sorry. My bad. Scroll over to where you can see the whole thing.”

Community Building (15%)
Talk about the challenge situation “No I think you wanna get rid of that one.”
Confirms understanding “Like that?”
Discusses the results “Uh, it’s not really working.”
Provides instructional support “If your pool has a heater, the bar will go up a lot.”
Asks others for suggestions “Okay. What do you wanna, what do you want me to draw?”

Moving Thinking Forward (9%)
Proposes (in)correct solutions “Place on shake.”
Strategizes to accomplish task goals “So now I think we push download and see what happens.”
Asks others for suggestions “How do I get rid of this?”
Provides reasons to support a solution “[...] we have to make that lower because its always gonna play if its 50.”
Questions/corrects others’ mistakes “No no. We already said Hello. [...]”

predictor of CPS performance both as individual indicators [49] or
as temporal clusters of indicators [54].

We adapted the original CPS scheme to the present studywherein
four coders, including one expert coder who helped develop the
original scheme, iteratively annotated a subset of Sensor Immersion
transcripts, noted points of disagreement, added clarifications and
examples to the coding scheme, and discussed inconsistencies until
consensus. After multiple training sessions, transcripts were di-
vided among coders who individually coded each utterance for the
presence of indicators (alongside the video for context). To ensure
reliability, the expert coder reviewed each coded transcript. We
then created a novel mapping of CPS indicators to CAs (Table 1),
using definitions from OpenSciEd (a free curriculum from which
the CA framework was derived) and by consulting with experts
in OpenSciEd. As shown in the table, approximately 9% to 15% of
the utterances contained a CA, and the labels are not mutually
exclusive.

Recording-level Expert CA Ratings. For further validation, we
adopted a high-level approach to CA rating, where two experts
(education and language researchers with experience in observ-
ing classroom activity) applied subjective ratings of CAs at the
recording-level. They were asked to “rate each video from 1-5 for
each [CA] (or indicate if it was not scorable).” Inter-rater reliabil-
ity as assessed by quadratic kappa was high for being respectful
(0.90) and community building (0.72) but lower for moving thinking
forward (0.34). Mean scores were 3.58, 3.14, and 3.47, respectively.

Utterance-level CPS mapped human annotations were averaged
to thhe recording-level and Spearman correlations with the expert
ratings were 𝜌 = 0.44 (moving thinking forward), 𝜌 = 0.25 (commu-
nity building), and 𝜌 = 0.42 (being respectful). Together, this is a

theoretical and methodological extension of the CPS framework to
a novel construct.

2.4 Data Processing
Teacher and non-consenting student utterances, and those directed
at teachers or students from other groups were excluded. Human
and ASR transcripts were normalized to ensure consistency and
accuracy for future classroom use. Normalization involved the re-
placement of hyphens with spaces, removal of transcriber notes
(e.g., "[inaudible]") and punctuation, and conversion to lowercase.
After preprocessing, the final filtered dataset comprised 9,607 ut-
terances. On average there were 2.3 students per recording (SD
= 0.6, range = 2-4), 1.4 recordings per student (SD = 1.0, range =
1-5), 67.6 utterances per recording (SD = 29.8, range = 20-194), 41.1
utterances per student (SD = 33.8, range = 4-228), 4.6 words per
utterance (SD = 4.0, range = 1-47), and 311.6 words per recording
(SD = 142.4, range = 94-906).

3 METHODS
3.1 Deep Transfer Learning with RoBERTa
We developed three computational models: one each for community
building, moving thinking forward, and being respectful. The models
were pre-trained RoBERTa language models - a variant of the BERT
language model with a multilayer bidirectional transformer archi-
tecture. The RoBERTa models were individually fine-tuned on the
filtered Sensor Immersion dataset annotated with binary labels for
each CA. Fine tuning pre-trained large language models is a NLP
technique that allows adaptation of powerful domain-agnostic mod-
els to specific tasks. Utterances were tokenized with the RoBERTa
tokenizer which incorporates padding and truncation to ensure that
all text sequences are of uniform length. The fine-tuning process
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comprised a batch size of 32, 50 training epochs, a learning rate of
5e-06, and 50 warmup steps. Hyperparameters were based on pre-
vious research on fine tuning RoBERTa models for CPS prediction
on a different dataset [32]. Minor adjustments were made but we
did not do massive hyperparameter tuning.

We used a stratified recording-level 10-fold cross-validation
framework for model training and evaluation. The dataset was
divided into 10 folds, where the proportions of positive samples
from each CA class were approximately equivalent and utterances
from single recordings were not split between folds. All experi-
ments were conducted based on these initial cross-validation splits,
ensuring consistency and reproducibility in our analyses. For each
round of cross validation, train (8 folds), validate (1 fold), and test (1
fold) sets were created. The train set was used to fine-tune the mod-
els, generating checkpoints throughout the process. The best model
checkpoint for a round was determined by testing the checkpoints
on the validate data. The checkpoint with the best performance on
the validate data was then used to test the held out test set and gen-
erate final predictions. Our primary evaluation metric was the area
under the precision-recall curve (AUPRC), chosen for its robustness
in handling class imbalances compared to metrics such as the area
under the receiver operating curve (AUROC) [19]. The reported
percent above chance represents AUPRCs adjusted to account for
baseline occurrence variations. We present results testing on both
human and ASR transcripts.

We also determined the extent that utterance-level human labels
andmodel predictions, aggregated to the recording-level, agree with
the subjective expert perception of CA usage per recording, which
goes beyond language and incorporates video context. Accordingly,
we correlated aggregated utterance-to-recording level human anno-
tations and model predictions of the CAs with the recording-level
expert rating (1-5 scale). Recording-level aggregations leverage the
principle of aggregation to reduce noise for an overall estimate
of CA prevalence per session. These correlations were performed
on a subset of recordings (N = 31) that had recording-level expert
judgments.

3.2 Human and ASR-Augmented Training
While training and evaluating NLP models on human-generated
transcripts provides a “gold-standard”, it remains critical to consider
how resilient models are to data collected in realistic conditions.
Thus, in addition to training solely on human transcripts, following
[4], we also incorporated ASR-augmentation. In this setting, for
each human-transcribed utterance, we added its ASR-transcribed
counterpart for training and testing. This new, effectively doubled,
ASR-augmented dataset was shuffled within recording such that the
human and ASR transcripts of a single student utterance were not
consecutive in model training. The same stratified recording-level
10-fold cross-validation folds were retained between the approaches
as our emphasis was in evaluating the relative performance shift
with the utilization of ASR-augmented training.

3.3 Generalization
We sought to determine the extent that the models fine-tuned on
Sensor Immersion data transferred to new tasks and curricula, with-
out the necessity of further training with data from the target con-
text. Specifically, we evaluated the models on two additional data
sets: (1) Physics Playground - an educational physics game, and
(2) Minecraft Hour of Code - a block programming game. These
datasets were collected as part of previous research on remote CPS
[43]. These datasets involved remote collaboration among N = 288
university level students (average age = 22). The Physics dataset con-
tained 46,679 utterances from 74 unique groups and the Minecraft
dataset contained 10,976 utterances from 32 unique groups. Par-
ticipants from both datasets self-reported gender as follows: 54%
female, 41% as male, 1% as non-binary/third gender, and 4% did not
report. Participants self-reported race as follows: 48% Caucasian,
25% Hispanic/Latino, 17% Asian, 3% Black or African American, 1%
American Indian or Alaska Native, 3% Other, and 3% did not report.
Both datasets were transcribed with IBM Watson, which provided
an additional source of variability.

Following [32], the primarymetric we used to evaluate the ability
of the models to accurately predict CAs in new domains was the
Transfer Ratio (TR):

𝑇𝑅 =
𝐴𝑈𝑅𝑂𝐶𝑎𝑐𝑟𝑜𝑠𝑠 𝑡𝑎𝑠𝑘 − 0.50
𝐴𝑈𝑅𝑂𝐶𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑎𝑠𝑘 − 0.50

The TR measures the relative decline in a model’s performance
when training and evaluating on data from different tasks (across
task evaluation), as compared to within the same task (within task
evaluation). A TR value of 1 would signify perfect generalizability,
with no decline in performance due to across-task evaluation. Both
the numerator and denominator of the TR equation are adjusted by
subtracting 0.50 to quantify performance difference over chance.

3.4 CA Noticings
Selecting Noticings. Our models returned a probability between

0 and 1 for each utterance, with 0.5 as a threshold for positive pre-
dictions. Probabilities closer to the threshold were low confidence
and those closer 1.0 were high confidence positive predictions. Pre-
liminary examinations indicated that it was insufficient to provide
highly confident positive predictions as noticings as they often
lacked context and viability to serve as learning examples. For in-
stance, versions of the phrase “yeah” tended to comprise the high
confidence predictions for being respectful as this was a highly typ-
ical exemplar of the indicator Responds to others’ questions or ideas,
but do not serve as good reflection opportunities. More context and
varied examples are needed for model transparency and to provide
qualitative feedback.

As such, we explored four computational strategies for iden-
tifying and ranking student speech examples that demonstrate
community building behaviors. These strategies included (1) rule-
based, (2) semantic similarity to student co-negotiated classroom
agreements, (3) semantic similarity to CA expert definitions, and (4)
topic modeling. The co-negotiated agreements were collected from
students in two middle school classrooms where teachers assisted
students in categorizing their ideas for definitions of the CAs. A
subset of the phrases used in both semantic similarity approaches,
as well as psuedocode for the rule based approach and the topics
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Table 2: Overview of the four computational approaches for selecting and ranking noticings.

CA Rule-Based
(Pseudocode)

Semantic Similarity:
Expert Defined
Indicators

Semantic Similarity:
Co-Negotiated
Classroom Agreements

Topic Modeling
(Representative
Words)

Respect
If the model
prediction
probability
exceeds a
threshold:

Categorize
into lists by
word count:

A. N >= 5,
B. 3 <= N < 5,
C. 2 >= N < 3

Sort A, B, C
individually by
prediction
probability.

Concatenate
sorted lists
A, B, C.

- Offers thanks, apology
- Complies with request
for help, offers help
- Compliments another
student
- Jokes to build rapport
- Asks for help or a
question

- Ask others before just
doing things
- Give everyone time to
think
- Don’t put group down
- Use your manners
- Treat everyone equal
- Don’t talk over others

- Helping (we, work
- Encouraging (fun,
nice)

Thinking - Gives reasons,
evidence for actions
or statements
- Realization, insight
- Conjecture

- Elaborate on thoughts
to enforce clarity
- Think outside the box
- Give everyone a
chance to think
- Speak your own truth
- Here’s what went
wrong

- Software (scroll,
download)
- Numbers (zero, one)
- Visuals (draw, graph)
- Science (soil, water)
- Hardware (wires,
connect)
- Sensor (sound, gator)

Community - Asks for input
- Asks for ideas
- Checks for
understanding
- Bids, requests to
contribute

- Be dependable
- Contribute equally
- Show that you care
- Help with no motive
- I can help you
- Your part looks good

- Collective
ownership of task
(we, do)
- Establishing roles
(driver, navigator)
- Results, next steps
(show, think)
- Reorienting team
(get, should)

(with corresponding representative words) chosen from the topic
modeling approach are detailed in Table 2.

For the rule-based approach, initially all positive predictions for
utterances comprising more than one word and an ASR confidence
score (Spearman 𝜌 correlation toWER = -0.59) greater than 0.5 were
identified. The set of two word or larger positive predictions with
sufficient ASR confidence were then divided into three separate
lists based on their word count (utterances with more than five
words, those with three to five words, and those with three words
or fewer). Following this categorization, each list was individually
sorted by prediction probability. Finally, these three sorted lists
were concatenated together, arranged in descending word count
order. This prioritized longer utterances, which inherently contain
more contextual information.

Both semantic similarity techniques follow the same process,
but differ in the set of phrases used to sort by. Starting with the same
list of utterances as the rule-based approach, the utterances were
projected into an embedding space using the BERT language model.
Embeddings adhere to the distributional hypothesis theory [21],
which posits that texts sharing similar meanings also possess similar
representations, and are positioned in closer proximity within the
embedding space. Consequently, the greater the cosine similarity
between two phrases, the more semantically related they are. One
version of this approach sorted noticings by semantic proximity to

real co-negotiated classroom agreements, whereas the other sorted
by proximity to expert definitions of the CAs. A cosine similarity
matrix of student utterances to phrases of interest was created.
Noticingswere iteratively chosen from thematrix in order of highest
cosine similarity to a phrase. A threshold of 0.80 was chosen such
that utterances with cosine similarity to all phrases below 0.80
would not be considered. The algorithm started by considering all
possible phrases, and as utterances were selected, the corresponding
phrase was no longer considered in that iteration. We considered
only phrases that had not yet been chosen so as to diversify the
noticings rather than overselect from a single phrase. This continued
until all utterances with cosine greater than 0.80 to a phrase were
chosen.

The topic modeling approach began with the utterances fil-
tered by the rule-based approach. We then harnessed topic models
to choose utterances that represent explicit topics of interest. Topic
modeling is a classic NLP technique that identifies latent topics or
themes within a collection of documents, enabling the discovery of
underlying patterns and structures [3]. We trained three BERTopic
models [17] on the set of all positive instances of each CA from the
training data and empirically chose a number of topics per model
that carefully balanced over-simplification with over-segmentation,
ultimately aiming for one that best captured structure in the data.
Once the topic models were created, we identified the topics that
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aligned with expert definitions and perceptions of the CAs, ex-
cluding those that were too broad or irrelevant. The selection and
ranking of noticings was performed by filtering the utterances that
are labeled as a topic of interest by a topic model and this set was
then sorted by NLP model prediction probability.

Human Ratings to Validate Noticings. The effectiveness and accu-
racy of these approaches were evaluated with human ratings. We
recruited a total of 33 raters who completed secondary education
or above through the decentralized Prolific survey platform [1]
to read noticings and judge whether they are examples of commu-
nity building, moving thinking forward, and being respectful. Each
noticing received a total of 3 human ratings. Raters (Female = 17,
Male = 16) were geographically diverse with an age range of 20 - 72
who indicated English as their primary and first language. Raters
were compensated US$6.00, with a median completion time of 14
minutes and 40 seconds.

We randomly sampled 200 positive predictions (from human
transcripts only to avoid the confound of ASR errors) for each CA
and subsequently filtered and ranked them with each approach. We
first computed correlations between the rankings given by each
approach in order to verify that they were not associated with one
another. There was considerable overlap in the selections of the
two semantic similarity methods (Spearman correlation 𝜌 = 0.75)
so we proceeded only with the semantic similarity to classroom
agreements. Correlations among the other methods were between
𝜌 = -0.25 and 𝜌 = 0.18, suggesting considerable variability.

The survey was split into three sections, one for each CA. Each
category contained 20 utterances noticed by the methods, 5 random
utterances that were not noticed by any method, as well as one
attention check totaling 78 items per participant. Items were indi-
vidually presented with the following instructions: “Please indicate
the extent to which the phrase below is an example of [Respect or
Thinking or Community].”) using a scale ranging from 1 (not at
all) to 5 (extremely). The definition of each CA was accessible for
the raters to view on each question. To control for quality, raters
completed two different tests before they were considered eligi-
ble to participate: (1) a screener validation, consisting of questions
replicated from the Prolific internal screening system in order to
disqualify those with inconsistent responses and (2) a comprehen-
sion check, involving 12 items that tested comprehension of the
CA definitions.

4 RESULTS
4.1 Accuracy of RoBERTa Models

Utterance-level Model Accuracy. The results of fine-tuning the
RoBERTa models on human and ASR-augmented data are given
in Table 3. Overall, models outperformed chance as evidenced by
AUROC scores greater than 0.5 (mean = 0.72, SD = 0.07) and AUPRC
scores exceeding the base rate (mean percent above base rate = 149%,
SD = 87%). In general, testing on human transcripts provided an
upper bound, and surpassed random chance by a substantial margin.
As expected, we observed performance degradation when testing
the models with the noisier ASR transcripts. Specifically, when
training on human transcripts only, we found AUPRC decreases
of -14.81%, -6.25%, and -38.71% between testing on human vs ASR

transcripts for moving thinking forward, community building, and
being respectful, respectively.

The incorporation of ASR-augmentation in fine-tuning yielded
significant enhancements in testing with both human and ASR tran-
scripts for all CAs. We found a notable improvement in the compar-
ison between testing on human vs ASR transcripts. Specifically, we
found AUPRC changes of -3.33%, +9.37%, and -7.69% between the
test sets formoving thinking forward, community building, and being
respectful, respectively. In addition to reducing the performance gap
between testing on human vs ASR transcripts, we found that over-
all predictions were more accurate for both transcript types. The
percent improvements of the AUPRC metric on human transcripts
was 11.11%, 0.0%, and 25.8% and the change was greater for the
Whisper transcripts, with AUPRC improvements of 26.09%, 16.67%,
and 89.47%, for moving thinking forward, community building, and
being respectful, respectively. ASR-augmentation proved to be the
most beneficial for being respectful.

Focusing on the improved ASR-augmentation approach, we
found fairly consistent results between the CA models. Testing
on human transcripts yielded AUROCs between 0.77 and 0.84, and
between 0.67 and 0.71 for ASR transcripts. ASR-augmentation in-
troduced a degree of diversity into the training data, encompassing
variations in speech patterns and errors often encountered in real-
world, noisy classroom environments. We hypothesized that this
diversity allowed our models to adapt better to the intricacies of
student discourse, ultimately resulting in improved generalization
to both transcript types. These combined effects highlighted the ef-
fectiveness of ASR-augmentation in refining the language model’s
capabilities for this task. While comparing our results with similar
research (e.g., [33]) is complex due to different labels, base rates,
and datasets, we found our results to fall within previously cited
accuracy ranges.

Relationships with Expert Ratings. The correlations (computed
with Spearman’s rho 𝜌) between recording-level expert ratings (on
a 1-5 scale) of the CAs and aggregated utterance-to-recording level
human annotations, human transcript trained model predictions,
and ASR-augmented model predictions (utterance-level labels and
predictions were averaged to the recording-level) were generally
moderate as shown in Table 4. We expected this, as individual per-
ceptions of CAs will inevitably differ from a CPS indicator mapped
version. The ASR-augmented model correlated more strongly with
the expert ratings than the model trained on human transcripts
across the board, presumably because this model was more accurate.
Surprisingly, it was also more strongly correlated than the ground-
truth human annotations for moving thinking forward; correlations
were on par for community building, and lower for being respectful.
Overall, the correlations from the ASR-augmented model provide
some confidence in the automated measurements.

4.2 Generalizability of Sensor Immersion
Models

We found that the models trained on Sensor Immersion data gen-
eralize well to the Physics Playground and Minecraft domains.
TR comprises the across task AUROC (the AUROC of the model
trained on Sensor Immersion and tested on the transfer datasets)
and the within task AUROC (the AUROC of the model trained and
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Table 3: Performance metrics from the three models (Agreement) tested on Human andWhisper ASR transcripts, averaged over
10 folds of stratified recording-level cross validation. Human and Whisper base rates differ due to missing Whisper transcripts
in the presence of noisy or unintelligible utterances.

Train Set Test Set CA AUROC AUPRC Base Rate % Above
Base Rate

Precision Recall

Human

Human
Thinking 0.75 0.27 0.09 200% 0.34 0.37
Community 0.72 0.32 0.15 113% 0.38 0.34
Respect 0.77 0.31 0.09 244% 0.42 0.38

Whisper
Thinking 0.64 0.23 0.12 92% 0.33 0.21
Community 0.61 0.30 0.22 36% 0.37 0.18
Respect 0.62 0.19 0.13 46% 0.26 0.30

ASR-
Augmented

Human
Thinking 0.82 0.30 0.09 233% 0.40 0.22
Community 0.77 0.32 0.15 113% 0.37 0.30
Respect 0.84 0.39 0.09 333% 0.51 0.29

Whisper
Thinking 0.71 0.29 0.12 142% 0.46 0.17
Community 0.67 0.35 0.22 59% 0.42 0.15
Respect 0.71 0.36 0.13 177% 0.38 0.22

Table 4: Correlations between recording-level expert ratings (1-5 scale) and (1) utterance-level human annotations, (2) utterance-
level human transcript trained model predictions, and (3) utterance-level ASR-Augmented model predictions, all averaged to
the recording-level.

Correlations with Holistic Expert Ratings on 1-5 Scale

Human
Annotations
(Ground Truth)

Human Transcript Model ASR-Augmented Model

CA Human Test ASR Test Human Test ASR Test

Thinking 𝜌 = 0.44 𝜌 = 0.47 𝜌 = 0.41 𝜌 = 0.68 𝜌 = 0.69

Community 𝜌 = 0.25 𝜌 = 0.10 𝜌 = 0.09 𝜌 = 0.41 𝜌 = 0.30

Respect 𝜌 = 0.42 𝜌 = 0.03 𝜌 = 0.06 𝜌 = 0.11 𝜌 = 0.17

tested within each transfer dataset). For Minecraft, the whithin task
AUROCs were 0.88 (moving thinking forward), 0.87 (community
building), and 0.88 (being respectful), and the across-task AUROCs
were 0.59 (moving thinking forward), 0.71 (community building),
and 0.67 (being respectful), resulting in TRs of 0.56 (moving thinking
forward), 0.73 (community building), and 0.46 (being respectful). For
Physics, the whithin task AUROCs were 0.83 (moving thinking for-
ward), 0.84 (community building), and 0.86 (being respectful), and
the across task AUROCs were 0.62 (moving thinking forward), 0.68
(community building), and 0.75 (being respectful), resulting in TRs of
0.67 (moving thinking forward), 0.74 (community building), and 0.85
(being respectful). While the datasets substantially differ in content,
student age, ASR type, and CA base occurrence (Minecraft: 0.22,
0.27, 0.25 and Physics: 0.19, 0.34 0.13 for moving thinking forward,
community building, and being respectful, respectively), the models
produced across task AUROCs well within the range of Sensor
Immersion results.

The TRs suggest better generalization overall to Physics (mean
TR = 0.75) and less so for Minecraft (mean TR = 0.58). We found
good generalization for community building across both transfer
tasks (TRs of .73 and .74) whereas being respectful generalized well

for Physics (TR of .85) but not Minecraft (TR of. 56). TRs formoving
thinking forward (.56 and .67) were intermediate. It appears that the
type of words commonly used in positive instances of community
building had more overlap among the three datasets than in the
other CAs as community building is less related to the content of
group work. With that said, the sensor-related content words in
the training data - as opposed to the Physics and Minecraft-related
content words in the transfer data - caused a lack of transfer, most
noticeably for moving thinking forward. Error analysis confirmed
that the models specifically suffered in instances with domain-
specific verbiage. An example of a false negative due to domain shift
(underlined) is, “okay so next time you want to start from the top
so that it swings you can hit control right click and it will delete”.
Further work is necessary to investigate these shortcomings as well
as to build robust models that can transfer to new domains with
little to no human annotated data.

4.3 Noticings User Study
Our analyses focused on the highest ranked (rank of 4 or 5) 423
utterances by the rule-based (𝑛 = 211), semantic similarity (𝑛 =
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Table 5: Example highly ranked noticings. Average human rating of each utterance is given in parentheses.

CA Rule-Based Semantic Similarity Topic Modeling

Respect
Is there anything I can do to
help? (rating 5)

Oh, I think I know why
(rating 3)

Here, I can help you (rating
4.67 )

Community
Wait, what do we do with
this though? (rating 4.25)

We didn’t know where to
place that (rating 3.67 )

Is that all we have to do?
(rating 4.25)

Thinking
K you press one, I press
one. Three, two, one beep
(rating 4)

Let’s see what it does now
(rating 4)

Should we go with a smile
face right here? (rating 3.7 )

202), and topic modeling (𝑛 = 103) approaches. Of these, 336 were
selected by a single method, 81 by two, and 6 by all three. The
ratings were averaged across raters, which was the main dependent
variable in our analyses. On average, the ratings hover around
the midpoint (mean = 2.27, SD = 0.84) of the 1-5 scale suggesting
that the identified noticings were perceived as being reasonable
examples of the CA categories, illustrated in Table 5.

For the main analysis, we regressed the mean rating on CA
(with community building as the reference group) x Method (with
rule-based as the reference group) interaction and the recording
as a random intercept (more complex random effects structures
resulted in convergence errors). Therewas no significant interaction
(𝑝 = .39), so we re-ran the model with main effects only. Results
indicated a significant main effect for CA (F(2) = 17, 𝑝 < .001). Post
hoc comparisons with false discovery rate corrections for multiple
comparisons indicated that ratings were significantly lower (𝑝 < .01)
for community building (M = 2.07) compared to being respectful (M
= 2.33) and moving thinking forward (M = 2.42); the latter two were
on par (𝑝 = .33). There was also a main effect of method (F(2) = 7.6,
𝑝 = .02) with semantic similarity (M = 2.16) being rated significantly
(𝑝 < .01) lower than rule-based (M = 2.38), but not significantly
different (𝑝 = .32) from topic modeling (M = 2.29), which was on
par with rule-based (𝑝 = .34).

5 DISCUSSION
Our overall focus was on the computational modeling of the rela-
tionship dimension of collaboration in classroom environments. We
utilized prior research on Collaborative Problem Solving (CPS) to
define three dimensions of collaboration, referred to as Community
Agreements (CAs). We investigated the accuracy of three fine-tuned
RoBERTa language model classifiers for each CA in noisy classroom
data. The classifiers far exceeded chance, though overall accuracy
was modest. The use of ASR-augmentation in fine-tuning the mod-
els made them more resilient to ASR errors and increased overall
robustness, as demonstrated by improved accuracy when testing on
human and ASR transcripts. We found that models trained strictly
within the Sensor Immersion dataset could modestly generalize
to new domains, even those in very different settings. Finally, we
found that rule-based and topic modeling approaches to filtering
and ranking noticings better aligned with human perception of the
CAs than a semantic similarity approach.

A major application of this research involves the practical use of
these collaboration analytics models within real educational envi-
ronments.We are in the process of integrating themodels developed

here into an AI technology that provides automated formative as-
sessments of CAs via visual representations of CA prevalence and
model noticings during small group collaborative learning. Teach-
ers are then able to facilitate a discussion around the predictions
- both in regard to the successful instances of collaboration that
were noticed in the classroom and also by interrogating current
limitations of AI systems. Another application is to provide auto-
mated assessments of collaboration as a variable for future research
studies on collaborative learning, where manual annotation is a
bottleneck.

Like all studies, ours has limitations. With respect to the coding
of CAs, the low inter-rater reliability kappa for moving thinking
forward and the low correlation with expert rating for community
building are indeed limitations, however the overall convergence
across raters and approaches encourages us that this is a productive
first step for the robust validation of the CAmeasure. Next, only one
type of NLP model was considered - fine-tuned RoBERTa language
models. The absence of a comparison to other NLP architectures
restricts our ability to assess relative performance and effectiveness
when compared to alternative approaches. We also did not collect
demographic data from individual students, which precluded an
analysis of bias/fairness of the models. Another limitation pertains
to the models’ focus on speech-only, whereas CAs may also be
expressed nonverbally. Our generalizability assessment was pre-
liminary with mixed results. As such, the applicability to different
domains or populations may vary and should be considered with
caution. With respect to the noticings user study, we only collected
feedback from adult raters with limited exposure to the problem
space. This choice, while deliberate for certain research objectives,
restricts the breadth of insights we can draw from their perspec-
tives. Lastly, whereas the present paper focused on validating the
models and selecting noticings, we have yet to investigate how these
models perform when integrated into future interventions.

Future work includes developing improved approaches to mod-
eling student speech, improving generalization to new domains,
investigating and mitigating potential biases, moving towards a
multimodal approach, soliciting feedback of noticings from users,
and assessing overall impact, fairness, and equity. For improving
the language models, we plan to investigate other pre-trained lan-
guage models architectures. The generalization of NLP models to
new domains is a fast-evolving research area in NLP, called the
cold start problem. This problem can be addressed with techniques
such as zero (or few) shot learning. Model bias will be assessed
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and potentially addressed with techniques such as adversarial de-
biasing. For further validation and improvement of our noticing
selections, we will seek feedback from users (e.g., students and
teachers), potentially using human ratings for training supervised
NLP models that learn to select noticings. Finally, while student
language is an important indicator of collaborative learning, we
plan to incorporate aspects of nonverbal signals such as eye gaze,
acoustic-prosodic features of speech, facial expressions, and body
movements in order to create a more thorough and robust model
of collaboration.

6 CONCLUSIONS
This study leveraged noisy classroom data, a context often underrep-
resented in research, to explore and model the relationship dimen-
sion of collaboration in the form of three Community Agreements,
shedding light on the dynamics of collaborative discourse within
real-world classroom environments. We successfully modeled the
Community Agreements with real-world speech, investigated their
generalizability to two other datasets, and we placed special em-
phasis on fostering deeper insights into the dynamics of collab-
oration in the form of noticings of student discourse to enhance
the overall learning experience. By providing concrete illustrations
of model predictions, we promoted deeper understanding of the
model’s decision-making process thereby fostering transparency
in AI-augmented educational settings.
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