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Abstract 
Communication via speech offers a window into a person’s mental and cognitive states. Both the manner in which a person speaks 
(acoustics) and the words spoken (language) may be used to assay current mental and cognitive function. In this study, we predicted 
self-reported emotion from the acoustics and language of the seemingly affectless task of verbally recalling a short story. Story recalls 
and self-reports of affect were collected over multiple days via a mobile application in a population of 21 psychiatric patients and 79 
presumed healthy participants, resulting in 137 and 430 total sessions for each group respectively. We have previously shown that 
analyzing just one modality of data produces moderate correlations with self-reported affect (0.33 < r < 0.40 for speech and 0.07 < r < 
0.28 for language). The goal of this study was to improve on unimodal analyses by extracting acoustic and language features from story 
recalls and combining them to predict a person’s self-reported affect. This combination of modalities resulted in an improvement over 
just one modality alone (0.38 < r < 0.48). We show that a multimodal analytic approach predicted self-reported emotional states in 
clinical and non-clinical participants better than a unimodal approach.  
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1. Introduction 
Psychosis can disrupt language production in a number of 
different ways, including acoustics (transmitted sound), 
lexemes (word choice), syntax (sentence structure), 
coherence (logical flow), and semantics (meaning; see 
Holmlund et al., 2020b for a review). Therefore, the 
evaluation of language production is an important 
component during clinical interviews and in many standard 
psychosis rating scales. Such formal examinations would 
hugely benefit from more objective and rigorously defined 
analyses where automation can improve speed, reliability 
and consistency of judgments. In this study, we first sought 
to answer whether machine learning techniques could infer 
what aspects of speech acoustics and what words and 
patterns of words in language could be used to predict 
positive and negative affect, and second whether the 
combination of these two modalities would improve on 
unimodal predictions. 
Clinically valuable characteristics, notably negative affect, 
exist even just in the sound of patients’ voices (Cohen et 
al., 2016a, 2016b). An example of such a characteristic is a 
lack of vocal modulation across changing clinical state. The 
clinical value in such a feature is that it can be a potential 
indicator of a worsening clinical state. Therefore, 
recordings of patients’ speech can be a critical component 
in the monitoring of patients with serious mental illness as 
these would allow clinicians to more accurately track 
dynamic signals over time in conjunction with other state-
related variables in formal analyses (Cohen et al., 2019).  
Linguistic variables of patient speech have been shown to 
contain power in predicting variables of interest in 
numerous clinical settings. For instance, Elvevåg et al. 
(2007) showed that levels of incoherence in language can 
be used in differentiating diagnostic groups and detecting 
severity in schizophrenia. Recent work in the field of 
artificial intelligence, and more specifically natural 
language processing (NLP), has shown that various 

cognitive variables can be predicted from language alone 
(for a review, see Voleti et al., 2019).  
Clinicians must integrate information from various 
behavioral, self-report, and historical sources during the 
assessment process. The language component of such 
assessments is just one of a multitude of modalities 
evaluated. Numerous aspects of serious mental illness can 
be conveyed in subtleties in a patient's vocal self-
presentation including emotions as expressed in both the 
sound of voice and the types of words used (Holmlund et 
al., 2020b), and clinicians may have difficulty noticing and 
remembering these distinctions. Mental disorders require 
longitudinal monitoring over several years which is 
extremely challenging cognitively for clinicians given the 
different clinical baselines of patients with serious mental 
illness. Furthermore, it is a difficult task for a human to 
evaluate the degree to which single modalities of behavior 
contribute to an individual’s overall mental and cognitive 
health. Thus, there is a pressing need for automated analytic 
methods to track and assess mental state in a scalable 
manner.  
As part of a larger study, data were collected through a 
mobile phone application, the delta Mental State 
Examination (dMSE), which administered assessments and 
collected speech, touch, and self-report data from users in 
order to track changes in mental state over time (Holmlund 
et al., 2019; Cohen et al., 2019). Of the 12 tasks 
administered to the users of the application, we chose a 
story recall task to answer the question of whether it is 
possible to predict self-reported measures of positive and 
negative affect using both speech acoustics and language 
features.  

2. Related Work 
It has been shown that emotional state can be automatically 
measured through a person’s speech, both in and out of the 
laboratory. For instance, the studies of Grimm et al. (2007), 
Asgari et al. (2014), and more recently, Zhaocheng and 



Epps (2018), showed that spontaneous emotion could be 
accurately predicted from speech. However, all studies 
took place in a controlled laboratory setting. Our recent 
work has shown that such analyses are also viable in less 
controlled settings when tasks are administered remotely 
via a mobile application (Cheng at al., 2018). In the study 
of Cheng et al. (2018), 10 speech-based tasks were used to 
predict self-reported positive and negative affect using only 
acoustic features. In the current study, we extended this to 
two modalities: speech acoustics and language, while 
focusing our analyses only on one single task that does not 
explicitly elicit emotion (story recall). 
One way to measure emotional state is by viewing it as a 
classification task. In such a task, the goal is to predict 
speech as belonging to one of the basic categories of 
emotion (e.g., happiness, anger, fear, etc.). This approach 
can be problematic since it is hard to get reliable 
categorization of emotion across evaluators (Mower et al., 
2009). While some studies of emotional prediction have 
attempted to mitigate and overcome this drawback (Steidl 
et al., 2005), most focus on the prediction of the extent to 
which certain categories of emotion are present via a 
continuous representation (Cowie et al., 2012). Thus, the 
present study employed a regression model to predict 
emotional state.  
Similar to the aforementioned studies, much of the analyses 
and modeling of behavioral and psychiatric data to date has 
been in a unimodal manner. For instance, the Interspeech 
2018 Computational Paralinguistics Challenge aimed to 
increase the sensitivity to the non-language information 
that is conveyed in acoustic properties of speech. 
Specifically, the self-assessed affect sub-challenge sought 
to predict the valence of emotions, with the objective of 
supporting applications for individuals with affective 
disorders, and for monitoring interactions between 
therapists and their patients (Schuller et al., 2018). 
By focusing solely on acoustic properties, these studies 
miss the signal contained in natural language features. 
While the manner in which language is produced at an 
acoustic level is decidedly important, classic language 
features have been shown to serve as a window into a 
person’s mental state. For example, natural language 
features have been shown to accurately predict 
performance on a story recall task often given as part of the 
clinical workup in psychiatric settings (Chandler et al., 
2019a; Holmlund et al., 2020a). Natural language features 
have been studied in a range of clinical applications from 
detecting language impairments in autism to flagging 
depression in twitter feeds (Goodkind et al., 2018; 
Coppersmith et al., 2015).  
In each study, patient data was reduced to a set of variables 
to relate to clinical measures of interest. Whether the 
modality of choice is acoustics, language, reaction time, 
precision, etc., it has been shown that psychiatric variables 
of interest can be accurately predicted from unimodal data.  

3. Data Collection 
The dMSE mobile phone application was created for the 
acquisition of cognitive and mental health data of various 
modalities from both a clinical and non-clinical population. 
Participants remotely completed sessions, each consisting 
of a series of 12 tasks, over the course of 3 to 6 days. Such 
tasks were created to be similar in form and structure to 
those employed by clinicians in standard 

neuropsychological evaluations. One part of each session 
prompted participants to answer several questions on their 
emotional well-being by moving a slider to indicate their 
current level of positive and negative affect (Cohen et al., 
2019; Cowan et al., 2019; Le et al., 2018, 2019; more detail 
in the next section). For the purpose of this study, slider and 
story recall results were captured by a smart device running 
the dMSE application.  
The story recall task prompted participants to listen to a 
short story and then retell it immediately in as much detail 
as possible. Stories were all presented verbally and 
contained two characters, a setting, an action that caused a 
problem, and a resolution. The content of the stories were 
designed to be generally well known topics that were 
emotionally neutral.  On average each story was 72 words 
(SD = 4.6) and each retell was 61.3 words (SD = 21.2 
words) and 41.7 words (SD = 21.0 words) for non-clinical 
participants and clinical participants, respectively. An 
example story was as follows: 
 

“On Monday morning, the woman woke up more 
tired than usual. When she walked downstairs to make 
herself a cup of coffee, she found her husband in the 
kitchen. She was surprised because he usually left an hour 
before she woke up. Her husband greeted her and reminded 
her that daylight savings time was over. Realizing the 
clocks were wrong, she happily ran upstairs and jumped 
back into bed.” 
 
The non-clinical subset of our data was composed of 430 
sessions that produced valid data from 79 (presumed 
healthy) undergraduates enrolled in psychology courses at 
Louisiana State University, yielding 5.4 sessions per 
student. The clinical subset of our data was composed of 
137 sessions that produced valid data from 21 stable 
clinical participants with a range of serious mental illnesses 
(schizophrenia, major depressive disorder and bipolar 
disorder; for details on the assessment procedure in a 
slightly extended sample, see Holmlund et al., 2020a), 
yielding 6.5 sessions per participant. This study was 
approved by the LSU Institutional Review Board (#3618) 
and participants provided their informed written consent 
before participation. 

4. Self-Reported Affect 
Each session with the dMSE application included sliders to 
assess general affective states. Participants were prompted 
as to their emotion on various questions (described below) 
and asked to indicate their responses on a scale of 0-100. 
The questions were based on the Positive and Negative 
Affect Schedule (Watson et al., 1988), which is a tool that 
measures Positive Affect (PA) and Negative Affect (NA). 
PA is defined as a state of high enthusiasm, activity, and 
alertness and NA is defined as a state of distress and 
unpleasurable engagement. Both are used to quantify mood 
and are known to be relatively independent of one another.  
The dMSE application contains 7 PA sliders that ask the 
user to report on personal levels of hopefulness, calmness, 
appreciation, strength, ability to concentrate, happiness, 
and levels of energy. Similarly, 8 NA sliders ask the user 
to self-report on personal levels of anxiety, frustration, fear, 
sadness, stress, anger, pain, and helplessness. The final 
self-reported PA and NA values per session is the average 
of the PA and NA slider responses. The PA results ranged 



from 0 to 100 with an average of 74.9 (SD = 21.0) for the 
clinical group and ranged from 10 to 100 with an average 
of 64.0 (SD = 17.3) for the non-clinical group. The NA 
results ranged from 0 to 100 with an average of 29.5 (SD = 
23.2) for the clinical group and ranged from 0 to 74 with an 
average of 26.1 (SD = 17.0) for the non-clinical group.  

5. Experimental Results 
In this study, we generated predictions of positive affect 
(PA) and negative affect (NA) in a clinical group and a non-
clinical group. The predictions were first based on speech 
features and standard NLP features individually, and then 
on a combination of these two to answer the question of 
how well multimodal predictions outperform unimodal 
predictions.  
In each experiment variation, a Support Vector Regression 
(SVR) model was trained on data from all participants in a 
group but one, and tested on the set of sessions of each 
‘held out’ participant. The SVR model was chosen as it is 
well-suited for predicting with many continuous 
independent variables. The SVR parameters were 
consistent with prior work: a radial basis function (RBF) 
kernel, degree = 3, cost = 10, eps = 0.2 (Cheng et al., 2018). 
The reported results are the average correlation between 
self-reported PA and NA and the predicted PA and NA 
over all tested participants. Each model was trained with 
these same parameters as we were more interested in 
relative improvements in the overall prediction of PA and 
NA when new features and modalities were introduced 
than finding the best overall models.  

5.1 Speech-based results 
The first experiment was a re-analysis of prior work (see 
Cheng et al., 2018 for details). Speech features from the 
openSMILE audio feature extractor (Eyben et al., 2013) 
were generated from each story recall response. The 
openSMILE audio feature extractor is a state of the art 
package that generates low-level features such as energy, 
loudness, and voice quality as well as processed statistics 
of such features such as means, extremes, regressions, and 
percentiles. We used the entire 2013 ComParE feature set 
which comprised 6,373 distinct speech features per 
response (Schuller et al., 2013).  
Prior work reported results on the same data and model, but 
used a 10-fold cross-validation training technique where 
model parameters were learned using 9 of 10 subsets of the 
data and tested on the 10th subset for evaluating 
performance. In contrast, we performed a leave-one-out 
cross-validation technique where the model parameters 
were learned using data from all but one participant and 
tested on the set of sessions from the single ‘held out’ 
participant. The benefit of this form of cross-validation is 
that the resulting models more closely resembled how well 
a fully trained model would perform when applied to new 
data.  
The subsequent analyses were performed on various 
subsets of the data. All openSMILE features were used in 
the SVR to predict both PA and NA in the clinical 
participants as well as in the non-clinical participants. For 
this part of the analysis, the groups were kept separate. The 
results of the different variations of the analysis are shown 
in Table 1. Consistent with prior work (Cheng et al., 2018), 
we found higher correlations to self-reported affect in the 
clinical population than the non-clinical population.  

 Clinical Non-clinical 
PA 0.40 0.33 
NA 0.39 0.36 

 
Table 1: Correlations between self-reported PA/NA and 

SVR predictions using all openSMILE features.  
 
Many of the features in the openSMILE feature set are 
highly co-linear, and so receive essentially 0 weighting 
within the prediction model.  While many contribute to the 
prediction models nearly equally based on small 
differences in the data, each iteration of the prediction 
model had a distinct best feature that correlated 
significantly higher than the rest. For instance, spectral flux 
and Mel-Frequency Cepstral Coefficients (MFCC) best 
predicted PA and NA respectively in the clinical group. 
Similarly, spectral roll-off and MFCC best predicted PA 
and NA respectively in the non-clinical group. 
In addition to models trained and tested on clinical and non-
clinical participants separately, a SVR model was trained 
on data from all clinical participants and tested on data 
from all non-clinical participants, as well as vice versa. The 
results of this portion of the analysis are detailed in Table 
2. When combining data from the two groups of 
participants, the correlations with PA and NA both 
significantly decreased. This suggests that the weights of 
the various speech features used to predict PA and NA have 
different distributions in the two subsets of participants due 
to the difference in ranges of self-reported affect.  
 

Training set Test set PA NA 
Clinical Non-clinical 0.16 0.11 

Non-clinical Clinical 0.06 0.08 
 

Table 2: Correlations between self-reported PA/NA and 
SVR predictions using all openSMLE features when 
trained on the non-clinical population and tested on 

clinical, as well as vice versa. 
 

Finally, one model with all clinical and all non-clinical data 
combined was trained and tested in the same leave-one-out 
manner. The average correlation between the SVR 
predictions and self-reports of PA was 0.13 and of NA was 
0.06. The lower correlations that result from both models 
that mix clinical and non-clinical data imply that these two 
populations must be considered independently as their self-
reports follow distributions that are distinct from one 
another. 

5.2 Language-based results 
Since the aim of this study was to test whether the addition 
of data from a separate modality would improve the ability 
to predict emotion, we next repeated the speech-based 
experiments on language-based features to compute a 
baseline of the power of language features.  
Traditionally, story recall is rated manually by assigning 
points for key words or thematic units correctly recalled. 
This process can be automated by extracting various task-
specific NLP features (e.g., common tokens between the 
original story and the recall or the cosine distance between 
the vector representations of the original story and the 
recall) from each recall response to measure the similarity 



between the two (see Chandler et al., 2019 and Holmlund 
et al., in press for more details).  
The audio of each story recall was transcribed by trained 
humans. Non-task-specific NLP features were computed 
and modeled against the self-reported affect variables (so 
as to focus the analyses only on general language features 
rather than those features that would indicate successful 
task completion). The NLP feature set included token 
count, type (unique words) count, type token ratio, content 
density, mean coherence, standard deviation of coherence, 
and counts of particular parts of speech such as verbs, 
nouns, pronouns. Type token ratio is defined as the ratio of 
word types to word tokens. Content density is defined as 
the number of verbs, nouns, adjectives, and adverbs to total 
tokens, or put simply, the ratio of content words to total 
words. Coherence is computed by comparing adjacent 
windows in the text for similarity. For the purpose of this 
study, the window size was chosen to be n = 4 and the 
similarity metric used was the cosine distance between 
vector embeddings of the words in each window. The 
average and standard deviation of similarities of all 
adjacent windows in a recall were computed. Table 3 
shows the results of the different variations of analyses 
conducted on language-features (which are identical to the 
variations in the speech-based experiments). 
 

 Clinical Non-clinical 
PA 0.16 0.07 
NA 0.28 0.14 

 
Table 3: Correlations between self-reported PA/NA and 

SVR predictions using all standard NLP features. 
 
Perhaps unsurprisingly, the NLP features were less useful 
than the speech features in predicting affect. Had the task 
analyzed been one that specifically seeks to elicit affect in 
the words spoken, such as the prompt “how are you feeling 
today?”, we predict that NLP features would be more likely 
to have a stronger impact on modeling affect. 
Finally, a semantic analysis was performed using high-
dimensional vector space embeddings of the text. The 
purpose of the semantic analysis was to measure subtle 
aspects of language meaning that could be correlated with 
self-reported affect across different participants. These 
embeddings operate under the assumption that words that 
tend to show up in similar contexts are semantically related 
and thus should be close to each other in a derived vector 
space. Examples of embedding techniques are simple count 
based vectorizers (with and without term frequency-inverse 
document frequency weighting), Latent Semantic Analysis 
(Landauer and Dumais, 1997), word2vec (Mikolov et al., 
2013), and ELMo (Peters et al., 2018). In this experiment, 
the term frequency-inverse document frequency weighted 
vectors were the most predictive out of those tested. The 
term frequency-inverse document frequency weighting 
accounts for how important a word is to a document based 
on counts of the word in the entire corpus. Although 
word2vec and ELMo embeddings are typically regarded as 
containing more signal in terms of word meaning, they 
proved unable to predict affect. This is likely due to the fact 
that the vocabulary of the recall task is limited and thus the 
increased power of the semantic/syntactic modeling found 
in these embeddings do not contribute greatly to predicting 

affective state.  The two variations of our two semantic 
language-based experiments are detailed below.  
First, a k-nearest neighbors (KNN) measure was developed 
to predict PA and NA based on the affect ratings of the 
closest recalls in the embedding space to a given recall. 
Once each recall is projected into an embedding space, the 
k = 6 (chosen based on the overall best performance on the 
held out data) closest embeddings of other participant 
recalls were retrieved and the affect for the session in 
question is predicted to be some function of those 6. The 
KNN measure provides an indexing of a participant's PA 
and NA mental state against the mental state of other 
participants. For example, if the language used in a 
response is highly similar to other participants, we can 
predict that their PA and NA scores would be similar.  
Second, the recall embeddings were used as input to a SVR 
model. The same experimental settings were used as in the 
SVR for speech-based features and the standard NLP-
based features. Results of the KNN model and the SVR 
model are detailed in Table 4. Again, the speech-based 
features consistently outperform the language-based 
features. 
 

 Clinical Non-clinical Clinical Non-clinical 
 KNN SVR 

PA 0.11 0.07 0.23 0.18 
NA 0.14 0.16 0.31 0.13 

 
Table 4: Correlations between self-reported PA/NA and 

both KNN predictions and SVR predictions using the 
recall embedding as input. 

5.3 Combined results 
Finally, to test our hypothesis that the inclusion of multiple 
modalities in the modeling of self-reported affect is 
superior to unimodal modeling, we combined the speech-
based features with the language-based features and ran the 
same SVR experiment variations as above.  
Combining two modalities improves predictions of self-
reported affect by 10-23%. Even though the recall task is a 
task that is not designed to specifically elicit emotion, the 
manner in which participants spoke in terms of acoustics 
and language still contained critical signals indicative of 
their positive and negative affect. 
All features (openSMILE, standard NLP, and recall 
embedding neighbors) were used in a single SVR model to 
predict positive and negative affect. Results of this 
combined model are detailed in Table 5. 
 

 Clinical Non-clinical 
PA 0.44 (10%) 0.38 (15%) 
NA 0.48 (23%) 0.40 (11%) 

 
Table 5: Correlations between self-reported PA/NA and 

SVR predictions using all features, with their relative 
improvements over unimodal predictions. 

6. Discussion and Conclusion 
In this research, self-reported measures of affect (e.g., 
PA/NA) were taken separately from the story recall task 
that was used to predict emotion. Indeed, the nature of a 
story recall task on neutral stories is not directly designed 
to elicit emotional state. However, subtle aspects of 



emotion were still evident in the language. These results 
indicate that the approach can derive a fairly stable measure 
of affect through self-reports that can be predicted in 
separate tasks. Furthermore, the results indicated that some 
people’s affect levels are easier to predict than others and 
some types of affect may be easier to predict. For example, 
Cheng et al. (2018) showed that negative affect was easier 
to predict than positive affect.  
Overall, we have shown that the use of multiple modalities 
of data in prediction models can lead to a significant 
increase in power over analyses of a single modality. 
Speech and language features each contribute independent 
components that help predict affective state. The speech 
features contributed more strongly to the predictions which 
could partially be due to the nature of the tasks used. 
Traditionally, unimodal data analyses have been conducted 
on clinically valuable data as the combination of modalities 
(and thus data types) can be statistically complex. 
However, the field of clinical medicine and behavioral 
science is beginning to see a push for more multimodal 
analyses. Although the collection of multimodal data is 
standard in many fields (e.g. neuroimaging; Sun et al., 
2020), it is just recently becoming common for multiple 
modalities to be considered in a single computational 
model.  
Overall, the results show a path towards automatic analysis 
of patient mental state using both audio and linguistic 
features. This research has shown that affective state can be 
predicted from a single task with two modes of 
communication. In automated assessment of psychiatric 
variables, it is important to consider multiple modalities of 
behavior, whether that is within language (considering both 
acoustic and linguistic data), or beyond, using patient 
actions, response speed, and other similar variables.  
The dMSE collected data from a variety of other tasks, 
including picture descriptions, verbal fluency, memory, 
tapping, and Stroop tasks. Thus, future research will 
examine the data from all tasks and run equivalent SVR 
experiments on features extracted from all sessions of each 
participant. This opens the possibility of analyzing a 
combination of speech, language, memory accuracy and 
touch-based speededness tasks, and could give a more 
detailed and accurate view of the patients’ state, more 
analogous to what a clinician considers when making 
decisions. However, with the increase in model 
complexity, we must be careful, especially in the field of 
medicine, to not lose the notion of transparency and 
explainability (Chandler et al., 2019b). Thus, while adding 
additional modalities and features, it is critical to remember 
that the goal is not just to build an accurate model, but to 
understand how that model can be used to inform sound 
clinical decision-making. 
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