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ABSTRACT
Objectives: Machine learning (ML) and natural language 
processing have great potential to improve efficiency and 
accuracy in diagnosis, treatment recommendations, predic-
tive interventions, and scarce resource allocation within psy-
chiatry. Researchers often conceptualize such an approach 
as operating in isolation without much need for human 
involvement, yet it remains crucial to harness human-in-
the-loop practices when developing and implementing such 
techniques as their absence may be catastrophic. We advo-
cate for building ML-based technologies that collaborate 
with experts within psychiatry in all stages of implemen-
tation and use to increase model performance while si-
multaneously increasing the practicality, robustness, and 
reliability of the process.  
Methods: We showcase pitfalls of the traditional ML frame-
work and explain how it can be improved with human-in-
the-loop techniques. Specifically, we applied active learning 
strategies to the automatic scoring of a story recall task 
and compared the results to a traditional approach. 
Results: Human-in-the-loop methodologies supplied a 
greater understanding of where the model was least confi-
dent or had knowledge gaps during training. As compared 
to the traditional framework, less than half of the training 
data were needed to reach a given accuracy. 
Conclusions: Human-in-the-loop ML is an approach to 
data collection and model creation that harnesses ac-
tive learning to select the most critical data needed to 
increase a model’s accuracy and generalizability more 
efficiently than classic random sampling would other-
wise allow. Such techniques may additionally operate 
as safeguards from spurious predictions and can aid in 
decreasing disparities that artificial intelligence systems 
otherwise propagate.

Key words:  machine learning/natural language 
processing/active learning/safeguards

INTRODUCTION

The notable success of machine learning (ML) and nat-
ural language processing (NLP) (see Table 1 for a glossary 
of technical terms used in this paper) in characterizing 
aspects of mental disorders has made an enormous im-
pact in psychiatric research and speculations regarding 
the future of clinical decision making. Artificial intelli-
gence (AI), which encompasses both ML and NLP, is ca-
pable of learning subtle and nuanced features and patterns 
of language and behavior. This is of particular interest 
in psychiatry where what patients  say  and how patients 
speak is a core component in clinical evaluation since 
symptoms and signs often emerge via speech. Deviations 
from “normal” speech (eg, less coherence, irregular part 
of speech use) are detectable with NLP methods. These 
techniques have been leveraged to predict diagnostic 
groups,1–8 fluctuations in patient state,9,10 patient affect,11–14 
thought disorder severity,15–18 among others. While these 
methods can uncover important signals in language and 
behavior for mental health applications, the field is still 
in its infancy for clinical applications. A general lack of 
model generalizability, transparency, and explainability 
may further limit the field from achieving its full transla-
tional potential.19

Today, most ML applications use supervised learning 
techniques: models learn patterns from labeled data 
and generalize this knowledge to new data, similar to 
how clinicians might learn to associate symptom pat-
terns to medical conditions.20 This contrasts with expert 
rule-based AI systems, where models comprise a series 
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of  rules to produce labels for new data. Since super-
vised learning models are trained on human-derived 
labels (such as diagnoses or clinician ratings), the hu-
mans’ role is primarily in writing the code that finds 
the best models and parameters to maximize predic-
tive performance (see Refs. 21,22 for an overview). The 
black box nature and lack of  human involvement in 
many of  these techniques increases risk of  spurious 
predictions and societal biases that inflate disparities 
in diagnosis, monitoring, and treatment.23–26 Without 
additional considerations and measures, these models 
can range from highly limited to critically dangerous in 
implementation.

Previously, we have followed traditional ML ap-
proaches to assessment in two distinct studies of the au-
tomatic scoring of story recall in healthy participants, 
and patients with (1) affective disorders27 and (2) serious 
mental illness28 (see Refs. 27,28 for details of the modeling 
process). Starting with fully annotated datasets (N =1177 
and N  =  846 story recall responses, respectively), NLP 
features which measured the amount and relevance of 
semantic content produced in the recalls were extracted 
and statistical analyses selected the most predictive ones. 
K-fold cross-validation was used to iteratively train and 
test regression models. Once the best features, model 
types, and parameters were determined, accuracy statis-
tics were reported and published (average Pearson corre-
lation with human ratings = 0.88 and 0.83, respectively), 
and the experiments ended. Despite being successful in 
terms of correlations obtained, the path to implementa-
tion remained unclear. Five key stages of the traditional 
ML framework applied to story recall scoring are shown 
in the top row of figure 1; the bottom row includes addi-
tional stages we advocate for.

This common ML framework has been applied widely 
in clinical assessment research (eg, 1–18) and has proved 
useful for understanding how language features com-
bine to model clinical judgments. However, several pit-
falls can lead to incorrect model decisions. First, it does 
not allow for sufficient human understanding of  the 
patterns of  input data which may lead to model uncer-
tainty, or how the model will handle such data. Second, 
effort is often spent on collecting and labeling fairly 
homogeneous data rather than the more diverse data 
needed to create a robust model.29 Third, only rarely 
is an evaluation set put aside and not touched until a 
final model is trained and tuned, especially in the case of 
small datasets.30 Thus, measures reported are likely bi-
ased to numbers generated for those datasets, such that 
models optimized for the entire dataset will be inflated 
when tested on the same data. Finally, it is assumed that 
models trained on specific locations and demographic 
groups can be applied elsewhere with similar results, yet 
ML models rarely transfer to new data as expected. This 
traditional framework may be sufficient for applications 
where there are no life-altering decisions involved, but T
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for high stakes assessments that must be robust and reli-
able, this is inadequate.

We argue that traditional ML approaches must be sup-
plemented to improve their generalizability, transparency, 
reliability, and applicability for the translation of clinical 
research into mainstream assessment. While there exist 
a range of methodologies that are applicable for solving 
this problem, we advocate specifically for the incorpo-
ration of a human-in-the-loop framework. These tech-
niques involve humans in additional stages of the model 
development process, enabling understanding of how ill-
ness dimensions (eg, different stages, symptoms) impact 
model predictions. Furthermore, they are well-suited for 
modeling dynamic, continuous real-world data that com-
prise multiple channels. From the clinical perspective, this 
framework is appealing as it generates models that are as 
robust and reliable as the data allows, supports under-
standing gaps in model knowledge, and can alert to unu-
sual inputs before spurious decisions are generated.31

Human-in-the-Loop AI

Human-in-the-loop is a general term for processes that 
enable collaboration between humans and machines. This 
paper focuses on the application of active learning, a tech-
nique employed during model training where the most es-
sential data is chosen for human labeling as early as possible 
(see figure 2). It begins with the collection of labeled and 
unlabeled data, and a partially trained model that will im-
prove with iterations of active learning. Two popular active 
learning sampling techniques—uncertainty and diversity 
sampling—allow us to label only data that are necessary 
to make a model more certain in areas of uncertainty and 

fill general knowledge gaps, thus improving efficiency (ie, 
requiring less labeled data to reach a given accuracy) and 
model robustness. These sampling techniques should be 
used in conjunction with random sampling to avoid biasing 
the model towards learning how to generate predictions on 
mostly rare examples. Once the chosen data are labeled, the 
model is retrained, and the process repeats until accuracy 
gains stabilize or a criterion is reached. We discuss how this 
is incorporated into the labeling of data and training of a 
model, and showcase the approach in the story recall task 
(with in-depth detail in Appendix A, supplementary mate-
rial and implications of applying this framework—as well 
as additional techniques—within development and deploy-
ment in Appendix B, supplementary material).

Uncertainty Sampling: the Known Unknowns

Uncertainty sampling is used to understand where the model 
is least confident; finding items the model knows it does not 
know. The goal is to discover unlabeled items closest to de-
cision boundaries in the trained model, obtain their labels, 
and increase certainty. In a clinical application, uncertainty 
sampling allows the model to become more confident in 
cases that exist near decision boundaries or in the extremes 
of the feature space, whether these are in diagnosis of mild 
symptoms, early stages of illness, or where patients are tran-
sitioning into decline. In a simple binary classification task 
with two labels, the most uncertain examples are those that 
the model assigns ~50% probability of the example be-
longing to either class. These items are the most likely to be 
incorrectly classified—which can be life-threatening, or life-
altering—so the goal is to strengthen confidence around a 
decision boundary to compensate for this.

Fig. 1. Top row: stages of the traditional ML framework applied to story recall scoring with minimal human involvement. Bottom row: 
active learning and human-in-the-loop safeguards which must be incorporated for translational value.
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In uncertainty sampling, items with the lowest confidence 
in the model are sampled. For instance, if a model predicts 
whether a speech segment is more y1: “schizophrenic-like” 
(loose associations), y2: “manic-like” (flight of ideas) (The 
terms are used as in the classic distinction differentiating 
speech displaying ‘loose associations’ versus a ‘flight of 
ideas’. These distinctions were formalized in models of 
language processing to characterize the manner in which 
incoherence differs in manic versus schizophrenic speech, 
with the former shifting ‘from one coherent discourse 
structure to another’ and the latter being deficient in ‘any 
discourse structure’32 [p. 831]) or y3: nondisordered, the 
output is a vector of size 3 where each number corres-
ponds to the predicted confidence of each label. In the 
case that the output is [0.6, 0.3, 0.1] the model assigned 
60% probability the speech is “schizophrenic-like”, 30% 
probability it is “manic-like”, and 10% probability it is 
nondisordered. Each unlabeled item in the dataset can 
be rank-ordered by predicted confidence and lowest 
ranked items are prioritized for labeling. Several criteria 
can determine this ranking: (1) least confidence criteria 
determines, for each unlabeled item, 1 minus the highest 
confidence label (in this example, the maximum confi-
dence is 0.6, so 1 − 0.6 = 0.4). (2) Margin of confidence 
ranks the unlabeled items by the difference between the 
two most confident labels (in this example, the margin of 
confidence would be 0.6 − 0.3 = 0.3). (3) Ratio of confi-
dence ranks the unlabeled items by the ratio between the 
two most confident labels (in this example, the ratio of 
confidence would be 0.6/0.3 = 0.2). (4) Entropy-based 
sampling measures the difference between all predictions 
to derive a measure of how much every confidence dif-
fers from another. Each of these approaches ensures that 
borderline cases are included in the training data, thus 
strengthening decision boundaries.

The aforementioned sampling techniques are not ap-
propriate for continuous-valued regression tasks. (5) 
Query by committee can be applied in both classifica-
tion and regression tasks.33 It is an ensemble-based ap-
proach where variations of ML models are trained with 
differing data subsets or hyperparameters to evaluate the 
extent to which varied models may disagree. The more 
disagreement, the more uncertainty around the input. 
This approach is common in neural networks, where a 
single unlabeled example is passed through the network 
multiple times, each iteration with a section of the net-
work dropped out34 to reveal whether more prediction 
disagreement occurs in certain problem space areas, fea-
tures, or demographics. Harnessing model variations to 
quantify uncertainty is analogous to comparing human 
opinions: cases where clinicians agree on some label may 
imply the symptoms in question align more with a “text-
book example” and are thus easier to label. In contrast, 
cases where clinicians make different judgments would 
indicate that this particular example is abnormal, and in-
cluding such examples with definitive labels in a training 
set would strengthen future predictions for such rarities.

Diversity Sampling: the Unknown Unknowns

Diversity sampling is used to understand areas in the 
dataset that are underrepresented in the model. Sampling 
items for diversity provides models a more complete pic-
ture of  the data and feature space. Knowledge gaps are 
usually areas where feature values are rare, or consti-
tute underrepresented real-world demographics. This 
is useful in clinical settings where understanding dem-
ographic intricacies is crucial for generating valid group 
predictions. Differences in language and behavior in-
herently exist between demographic groups, and if  not 

Fig. 2. Active learning process for story recall scoring. Adapted from Human-in-the-Loop Machine Learning.31
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well-represented in the model, it will not be able to make 
accurate predictions in these cases. This is furthermore 
a reason that each model must be transparent with re-
spect to assumptions used in their creation—ie, if  a 
model was trained only on data from those who speak 
English as their first language, it must be made explicit 
that the model cannot be expected to accurately predict 
variables of  interest for those who learn English as a 
second language.

Importantly, this sampling can be done with and 
without a trained model. The first approach that har-
nesses a trained model is (1) model-based outlier sampling 
which seeks to understand examples that are currently 
unknown to the model by finding individual feature 
values or combinations that have not yet been encoun-
tered in training. In neural networks, this can be done 
by investigating neuron activations as each unlabeled ex-
ample is passed through the network since neurons with 
the most activation tend to be those that the network has 
more information about. Activations are ranked and ex-
amples that produced the smallest activations are chosen 
as outliers. For clinical data, this entails sampling data 
from patients whose symptoms do not align with what 
is represented in the training data. Model-based outlier 
sampling can overemphasize a model’s statistical biases 
and thus choose similar outliers each time; hence, the im-
portance of investigating diversity sampling approaches 
that are not model based.

The next approaches operate distinctly from a trained 
model. (2) Cluster-based sampling divides the data into 
unsupervised clusters and samples an equal number of ex-
amples from each, allowing an even spread of data types 
and ensuring the training set does not over-represent 
single areas. Here, for each cluster (created by a standard 
algorithm such as k-means), sampling is both random 
and from the centroids and outliers. If  clusters match 
underlying symptoms in a clinical group, the model will 
be evenly trained on each group. (3) Representative sam-
pling finds data most similar to the data in real-world 
applications,35 and is achieved in an adaptive manner 
where one example is chosen per iteration so as to not 
choose a full set of similarly representative examples. 
This allows the model to more fully address disparities 
between the training data and real-world application. If  
the model is already fully trained on representative data, 
no further examples are needed for this criterion to be 
reached. Finally, (4) sampling for real-world diversity can 
take many forms. The model must take into account any 
meaningful data characteristic that affects model perfor-
mance in certain contexts. These characteristics could be 
variables such as race, language, location, gender, socio-
economic status, and education, with the potential that 
these biases can inflate in combination. For instance, race 
in certain locations skews data more heavily than in other 
locations (for an overview on bias in NLP see Refs. 23,36). 
Measuring and reducing real-world bias is complex, but 

various approaches can minimize the impact, such as ap-
plying all active learning approaches stratified over each 
demographic, thus sampling a wide range of examples for 
each group.

It is well-known that ML models amplify biases in-
herent in data.37 Clinical data in particular is heavily 
skewed toward the most highly represented demo-
graphics: participants tend to be from western, highly 
educated, industrialized, rich, and democratic areas.38 If  
random sampling is used to gather such data, the model 
will be heavily biased as more examples will naturally be 
drawn from dominant classes. Thus, increasing diversity 
in datasets will also increase access for more target popu-
lations once implemented. For verifying robustness to 
various demographics during training, researchers should 
calculate macro accuracy statistics per demographic. 
Specifically, the evaluation dataset should include the full 
range of demographics of interest. Statistics such as min-
imum score by demographic or harmonic mean over all 
demographics can verify consistency in predictions. If  ac-
curacy is disproportionately lower in certain populations, 
effort must be made to add more data from those popula-
tions, or explore approaches such as synthetic data gener-
ation (Appendix B, supplementary material).

METHODS

We demonstrate an implementation of  a human-in-
the-loop ML framework applied to an automated 
story recall assessment model. Evaluation of  human 
verbal memory is a critical component of  establishing 
neurocognitive function in psychiatry, and arguably 
has some similarities to the anamnesis process of  med-
ical history taking, where the clinician asks questions 
to probe the patient to recall information to facilitate 
the diagnosis process. Given its importance, it is a core 
component of  the Wechsler Memory Scale,39 where the 
Logical Memory subtest requires the patient to repeat 
short stories immediately after they have been spoken 
by the examiner, and after a delay. Automation of  such 
an assessment may enable more regular and/or remote 
assessments, which may be beneficial for longitudinal 
monitoring of  patient health.

For this experiment, we harness a dataset of 846 la-
beled responses from 79 healthy participants and 23 par-
ticipants with affective disorders. Responses were scored 
on a scale of 1–6. Active learning is simulated by ignoring 
labels until responses are chosen to demonstrate how a 
superior model can be obtained more efficiently than can 
be done with random sampling or by labeling all of the 
data. This simulates the human-in-the-loop process as the 
algorithm picks which data is to be labeled by a human 
at each iteration, rather than requiring it all to be labeled 
initially. We randomly sampled 100 training responses 
(training set), 100 for tuning parameters (validation set), 
and 100 for obtaining accuracy measures (evaluation set; 
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sampled with stratified sampling so as to achieve an equal 
spread of ratings and demographics). Creating three 
subsets of 100 responses is an arbitrary choice, and can 
be implemented in many other ways.

What remains constant in all approaches is that 
the evaluation set is put aside until the model is fully 
trained and tuned, such that evaluation is not biased or 
overfitted. It is good practice to generate multiple evalu-
ation datasets. One strategy is to create two: one drawn 
from the same dataset as the training and validation and 
one drawn from a different source. The out-of-domain 
dataset enables evaluation of  model generalization to the 
problem, rather than to particular idiosyncrasies of  the 
training set. In addition to the evaluation set sampled 
from the original 846 responses, we also tested the ac-
tive learning approach on a separate dataset of  1177 re-
sponses collected from 120 healthy participants and 105 
participants with serious mental illness. With this testing 
approach, it becomes clear whether the model has suf-
fered from overfitting. (A popular example from com-
puter vision is that of  a model thought to distinguish 
huskies from wolves.40 The model learned to identify 
wolves by learning that photos taken with snow were 
usually wolves. It never learned to distinguish between 
the animals, but rather learned an idiosyncratic correla-
tion in the data. From a clinical perspective this is anal-
ogous to a model trained to predict whether a patient 
has schizophrenia. Due to the dataset comparing highly 
educated healthy controls to less educated schizophrenia 
patients, the model learns to predict by education arti-
facts rather than disease symptoms.)

Active learning starts with a minimum viable product: 
here it is a ridge regression model trained on the initial 
small training set. This model achieved a 0.66 Pearson cor-
relation to human ratings when tested on the responses in 
the evaluation set. Each active learning iteration sampled 
100 additional items: 45% via uncertainty sampling, 45% 
via diversity sampling, and 10% via random sampling. 
These percentages must be tuned based on the applica-
tion. For example, if  the problem is unbalanced (ie, ma-
jority class examples outnumber minority class examples) 
and more samples from minority classes are needed, it is 
better to oversample from diversity sampling as majority 
class outliers are less likely to be of interest.

For each sampling approach, we implemented the best-
suited techniques for a regression model (see Appendix 
A, supplementary material for a detailed overview of 
the first iteration of active learning). Figure 3 shows 
data selected in the first iteration, where uncertainty 
sampling (query by committee), diversity sampling (clus-
tering: centroids, outliers, random, and real world), and 
random sampling were applied. These 100 examples were 
“labeled”, added to the training set, and the regression 
model was retrained. This process was repeated five times 
until all remaining responses (N = 646) were included in 
the training set.

RESULTS

As a result of the first round of active learning, the 
Pearson’s correlation on the evaluation set increased from 
an initial 0.66 correlation to 0.78. For comparison, this 
was replicated with 100 random samples and resulted 
in a 0.69 Pearson correlation. Figure 4 shows the rela-
tive increase in correlation with the held out evaluation 
set as active learning progressed (blue lines with circles 
overlaid; solid for active learning and dashed for random 
sampling). The model required 200 training examples to 
reach a correlation of 0.78 with human labels, while an 
approach with random sampling reached this correlation 
only after the incorporation of 500 responses. Results 
were similar when testing both approaches on an external 
dataset, labeled “Transfer” and depicted with orange 
lines without overlaid circles in figure 4. As the external 
dataset was collected from a different population, had a 
different distribution of feature values and ratings, and 
had a lower inter-annotator agreement, it required two 
rounds of active learning to reach its maximum accuracy. 
Nevertheless, when more critical data are chosen to train 
the model earlier, significantly less data are needed to 
reach a given accuracy.

Human-in-the-loop strategies may more generally 
apply as safeguards to investigate model stability and ro-
bustness when deployed in new situations (Appendix B, 
supplementary material). We simulated a deployment of 
the story recall model to the Transfer set. Implementing 
the query by committee technique, six regression models 
were trained with varied parameters and subsets of 
training data. Ranges in the six predicted values (max-
imum − minimum predicted rating) were computed and 
responses were ranked accordingly. The two most uncer-
tain responses were from the same participant who had 
profanity and violence in their response. The responses, 
however, were verbose and fairly on topic to the prompt, 
making the feature distributions highly irregular. Both 
responses had an expert score of 1 (the lowest score); 
however, the fully trained model scored both between 3 
and 4 points. After the two most uncertain responses, un-
certainty levels severely dropped and no other responses 
from the Transfer set were deemed highly unusual from 
the data the model was trained on (as the task is fairly 
constrained). As a means to understand how the model 
performs in different levels of certainty, the top and 
bottom 10% of responses with respect to their prediction 
ranges were extracted and tested with the fully trained 
model. The 10% with the lowest range (most certain) re-
sulted in a correlation with the human ratings of r = 0.90 
and the 10% with the highest range (most uncertain) cor-
related r = 62. Thus, this method is able to be harnessed 
as a means to alert clinicians when not to rely on model 
predictions. Real world sampling was also implemented 
at this stage to flag responses from humans whose demo-
graphics were not fully covered in the training data.
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Discussion

Human-in-the-loop approaches will not solve every ML 
pitfall. They remain limited in the same manner as tradi-
tional approaches by the quality of a dataset. If  a problem 
is ill-formed, or chosen features do not predict variables 
of interest with high accuracy, human-in-the-loop tech-
niques will not make up for this. While diversity sampling 

can alert humans to discrepancies in the model’s repre-
sentation of demographic groups, it will never solve the 
issue of missing data. Furthermore, the implementation 
of evaluation metrics such as test-retest reliability and 
divergent validity41 remain critical for garnering trust in 
these approaches.

The creation of AI methods for psychiatric applica-
tions requires the involvement of many humans. Whether 
that is researchers conceptualizing a computerized so-
lution, engineers developing a model, or clinicians 
incorporating such a model in the clinic, it should be 
clear that the absence of the “human” from the “loop” 
would be catastrophic. Here, we proposed a specific type 
of human-in-the-loop ML, where best practices are har-
nessed to create the most robust and reliable model pos-
sible. These methodologies—now widespread in many 
areas of AI—can apply to various types of data and ex-
perimental studies. While there has been much success 
in the analysis of structured speech samples for clinical 
applications, the human-in-the-loop framework offers 
equal, if  not more, power in applications with less con-
straint and more freedom for diverse data. This is espe-
cially the case in free speech, where a wide range of task 
types exist (eg, semantic fluency, story recall, process 
questions, open-ended prompts, and unprompted lan-
guage including a person’s emails, texts, or day-to-day 
speech). As task constraints are lifted, more diverse data 
are generated and more safeguards must be incorporated.

Fig. 3. Scatter plot of unlabeled story recall responses chosen via uncertainty (N = 45), diversity (N = 30 clustering, N = 10 real world), 
and random (N = 10) sampling in the first active learning iteration, visualized with the first two components of PCA.

Fig. 4. Line plot of story recall model prediction and human 
rating correlations when harnessing active learning (solid lines) 
versus random sampling (dashed lines), testing on the evaluation 
set (blue lines with overlaid circles) and the transfer set (orange 
lines without overlaid circles). Both approaches continue until 
the full dataset is harnessed and correlations converge. For 
interpretation of the references to color in figures, the reader is 
referred to the web version of this article.
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pathology. Schizophr Bull. 2021;48(2):285–288. doi: 10.1093/
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 24. Strickland  EK. IBM Watson, heal thyself: How IBM 
overpromised and underdelivered on AI health care. IEEE 
Spectr. 2019;56:24–31.
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Bias in, bias out: Underreporting and underrepresentation 
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for skin  cancer detection-A scoping review. J Am 
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10.1016/j.jaad.2021.06.884. Epub ahead of  print. PMID: 
34252465.

 26. Oliva  J. Dosing Discrimination: Regulating PDMP Risk 
Scores. 110 California Law Review (forthcoming 2022). 2021. 
Available at SSRN: https://ssrn.com/abstract=3768774 or 
http://dx.doi.org/10.2139/ssrn.3768774 

 27. Chandler C, Foltz PW, Cheng J, et al. Overcoming the bottle-
neck in traditional assessments of verbal memory: Modeling 
human ratings and classifying clinical group membership. In 
Niederhoffer,  K., Hollingshead,  K., Resnik,  P., Resnik,  R., 
Loveys,  K. (Eds), Proceedings of the Sixth Workshop 
on Computational Linguistics and Clinical Psychology. 
Minnesota, USA: Minneapolis, 2019:137–147. http://dx.doi.
org/10.18653/v1/W19-3016

 28. Holmlund TB, Chandler C, Foltz PW, et al. Applying speech 
technologies to assess verbal memory in patients with serious 
mental illness. NPJ Digital Med. 2020;3:33. doi: 10.1038/
s41746-020-0241-7.

 29. Fisher  AJ, Medaglia  JD, Jeronimus  BF. Lack of group-to-
individual generalizability is a threat to human subjects re-
search. Proc Natl Acad Sci USA. 2018;115(27):E6106–E6115. 
doi: 10.1073/pnas.1711978115.

 30. Foltz P, Rosenstein M, Elvevåg B. Detecting clinically signifi-
cant events through automated language analysis: Quo imus? 
NPJ Schizophr. 2016;2:15054. doi: 10.1038/npjschz.2015.54.

 31. Monarch,  RM. Human-in-the-Loop Machine Learning: 
Active Learning and Annotation for Human-Centered AI. 
Shelter Island, NY: Manning Publications Co. 2021.

This paper is intended to serve as a framework that re-
searchers and clinicians can follow for the creation and 
deployment of reliable models that incorporate imple-
mentation safeguards to protect patients from spurious 
model predictions. We must move beyond the traditional 
approaches to implementing ML models as the results 
tend to be brittle and inappropriate for clinical implemen-
tation. The way forward must integrate a robust frame-
work placing control in the hands of the human and 
providing safeguards for the users. Hence, incorporating 
human-in-the-loop methodologies in clinical practice will 
result in humans remaining accountable in the decision 
making process. The future of AI in psychiatry is not that 
of computer or human, but rather will harness the best 
of both while maximizing explainability, minimizing bias, 
and keeping algorithmic accountability in the hands of 
the human.
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Supplementary material is available at Schizophrenia 
Bulletin. 
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